EXPERIMENT 10: CELLULAR RESPIRATION

Course Learning Outcome:

Solve problems related to transport system processes, mechanisms for adaptations in living things, ecological and environmental issues in biology.

(C4, PLO 2, MQF LOC ii)

Learning Outcomes:

At the end of this lesson, students should be able to:

- i. Explain the concept of redox reaction in cellular respiration.
- ii. Predict the biochemical processes in yeast suspension during presence and absence of oxygen.

Student Learning Time:

Face-to-face	Non face-to-face
1 hour	1 hour

Direction: Read over the lab manual and then answer the following questions.

Check this out:

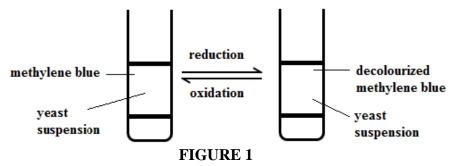
CORONA-19 pandemic is caused by SARS-CoV-2 virus. It began towards the end of 2019 in China, and soon became a worldwide epidemic, more than more than 649 000 people died and 16 million cases were accounted by 26 July 2020.

COVID-19 disease causes an energy supply deficit in a Patient. How?

Received: 26 July 2020 Accepted: 27 July 2020

For further details related to the above headline, do click the URL below: Wiley Online Library: https://onlinelibrary.wiley.com/doi/10.1002/er.5883

Let's take a break and sing along


cellular respiration song

Introduction

Define cellular respiration.

2.	What is redox reaction?
3.	Define operationally:
	a. Reduction:
	b. Oxidation:
4.	Write the equation for cellular respiration
5.	Name ONE substance as major source for aerobic respiration.
<u>Ex</u>	<u>xperiment</u>
1.	State the variables for this experiment.
	a. Manipulative:
	b. Responding :
	c. Constant :
2.	What is the role of methylene blue in this experiment?
3.	State TWO electron carriers in cellular respiration.

4. **FIGURE 1** demonstrates redox reactions by substituting NAD⁺ with methylene blue. Complete the table below that shows the colour changes of methylene blue as a redox indicator.

Redox reaction		
Methylene blue colour	Blue /greenish blue	white /light blue

	Predict the colour changes of methylene blue and yeast suspension when the boiling tube: a. Plugged with a cork and shaken vigorously:
	b. Cork is removed :
5.	What is the effect of heat to the yeast suspension and the enzymatic reaction?
6.	Can the yeast undergo cellular respiration if the enzyme denatures? State the colour of the methylene blue.
7.	List TWO precautions of the experiment: i